澳门全讯-澳门金沙会积分获取

Your browser does not support the HTML5 canvas tag. Your browser does not support the HTML5 canvas tag. Your browser does not support the HTML5 canvas tag.

講座論壇

  • 首頁  講座論壇  國(境)外文教專家系列講座
  • 國(境)外文教專家系列講座一百六十一講-比薩大學Dario A. Bini教授:Solving structured matrix equations encountered in the analysis of stochastic processes

    作者:發布時間:2022-05-18來源:中國海洋大學 字號:

    一、主講人介紹:Dario A. Bini

    Dario A. Bini,意大利比薩大學數學院教授,主要從事馬爾可夫鏈及排隊問題數值解、矩陣方程數值解法、結構化矩陣計算、幾何矩陣均值及其算法。Dario A. Bini教授在Numerische MathematikMathematics of ComputationSIAM Journal on Scientific ComputingSIAM Journal on Matrix Analysis and ApplicationsIMA Journal of Numerical AnalysisNumerical Linear Algebra with Applications等計算數學國際頂尖和權威期刊發表論文200余篇,出版Numerical Solution of Algebraic Riccati EquationsNumerical Methods for Structured Markov Chains等計算數學論著7余篇。曾擔任SIAM J. Matrix Analysis Appl.Electronic Transactions on Numerical AnalysisElectronic Journal of Linear Algebra等計算數學國際頂尖以及權威期刊編委。

     

    二、講座信息

    講座摘要:

    We consider the problem of solving matrix equations of the kind A_1 X^2+A_0X+A_(-1)=X , where the coefficients  A_r ,r=-1,0,1, are matrices having specific structures, and X is the unknown matrix. The solution of interest is the one that has some minimality properties, say, it has a minimal spectral radius or has nonnegative entries with minimal value. This kind of problem is encountered in the solution of Quasi-Birth-Death processes, a general framework that models real-world problems in terms of Markov chains. In this talk, after presenting and motivating the interest of this class of equations, we investigate some computational issues encountered in their solution. For this class of problems, the coefficients A_r ,r=-1,0,1 ,  are semi-infinite Quasi-Toeplitz (QT) matrices. We give conditions under which the class of QT matrices is a Banach algebra, that is, a vector space closed under multiplication, endowed with a norm that makes it a Banach space. We give conditions under which the sought solution, say the minimal nonnegative one, is still a QT matrix, and describe and analyze  algorithms for its effective computation. Finally, by means of some numerical experiments performed with the CQT Matlab Toolbox, we show the effectiveness of our algorithms

    講座時間:526日(星期四)13:30-14:30

    騰訊會議號:142-518-059

     

    歡迎大家積極參加!

     

     

    國際合作與交流處

    數學科學學院  

    2022518  


    文:
    圖:
    返回列表
    百家乐梅花图标| 百家乐技巧玩法技巧| 百家乐游戏合法吗| 大发888在线投注| 金字塔百家乐官网的玩法技巧和规则| 太阳城菲律宾官网| 百家乐官网技巧看| 百家乐官网管理启发书| 威尼斯人娱乐注册| 优惠搏百家乐官网的玩法技巧和规则| 新澳门娱乐城官网| 百家乐官网平注法规则| 兴海县| 钱柜百家乐的玩法技巧和规则| 百家乐官网的分析| 博彩娱乐城| A8百家乐的玩法技巧和规则| 荷规则百家乐官网的玩法技巧和规则 | 百家乐官网赚钱项目| 娱乐百家乐下载| 百家乐官网特殊计| 网上百家乐官网的技巧| 德州扑克在线游戏| 百家乐赌场策略论坛| 送彩金百家乐官网的玩法技巧和规则 | 安仁县| 大发888特惠代码| 宝博百家乐娱乐城| 云博娱乐场| 网上赌场| 大发888娱乐城3403| 百家乐赌场娱乐网规则 | 澳门百家乐官网真人斗地主| 太阳城网上娱乐| 大发888玩哪个能赢钱| 赌场百家乐的玩法技巧和规则 | 威尼斯人娱乐城反水| 百家乐三珠投注法| 百家乐视频游戏双扣| 网上百家乐解码器| 新葡京百家乐现金|