澳门全讯-澳门金沙会积分获取

Your browser does not support the HTML5 canvas tag. Your browser does not support the HTML5 canvas tag. Your browser does not support the HTML5 canvas tag.

講座論壇

  • 首頁(yè)  講座論壇  國(guó)(境)外文教專(zhuān)家系列講座
  • 國(guó)(境)外文教專(zhuān)家系列講座一百七十六講-鞠立力:A Deep Learning Method for the Dynamics of Classic and Conservative Allen-Chan equations based on Fully-Discrete Operators

    作者:發(fā)布時(shí)間:2023-06-16來(lái)源:中國(guó)海洋大學(xué) 字號(hào):

    一、主講人介紹:趙雁翔教授

    鞠立力教授1995年畢業(yè)于武漢大學(xué)數(shù)學(xué)系獲數(shù)學(xué)學(xué)士學(xué)位,1998年在中國(guó)科學(xué)院計(jì)算數(shù)學(xué)與科學(xué)工程計(jì)算研究所獲得計(jì)算數(shù)學(xué)碩士學(xué)位,2002年在美國(guó)愛(ài)荷華州立大學(xué)獲得應(yīng)用數(shù)學(xué)博士學(xué)位。2002-2004年在美國(guó)明尼蘇達(dá)大學(xué)數(shù)學(xué)與應(yīng)用研究所從事博士后研究。隨后進(jìn)入美國(guó)南卡羅萊納大學(xué)工作,歷任數(shù)學(xué)系助理教授(2004-2008),副教授(2008-2012),和教授(2013-現(xiàn)在)。主要從事偏微分方程數(shù)值方法與分析,非局部模型與算法,計(jì)算機(jī)視覺(jué),深度學(xué)習(xí)算法,高性能科學(xué)計(jì)算,及其在材料與地球科學(xué)中的應(yīng)用等方面的研究工作。至今已發(fā)表科研論文140多篇,Google學(xué)術(shù)引用5000多次。自2006年起連續(xù)主持了十多項(xiàng)由美國(guó)國(guó)家科學(xué)基金會(huì)和能源部資助的科研項(xiàng)目。20122017年擔(dān)任SIAM Journal on Numerical Analysis的副編輯,目前是JSC, NMPDE, NMTMA, AAMM等期刊的副編輯。與合作者關(guān)于合金微結(jié)構(gòu)演化在“神威·太湖之光”超級(jí)計(jì)算機(jī)上的相場(chǎng)模擬工作入圍2016年國(guó)際高性能計(jì)算應(yīng)用領(lǐng)域“戈登·貝爾”獎(jiǎng)提名。

     

    二、講座信息

    The Allen-Cahn equation is a well-known stiff semilinear parabolic partial differential equation (PDE) used to describe the process of phase separation and transition in multi-component physical systems, while the conservative Allen-Cahn equation is a modified version of the classic  Allen-Cahn equation that can additionally conserve the mass. As neural networks and deep learning techniques have achieved significant successes in recent years in scientific and engineering applications, there has been growing interest in developing deep learning algorithms for numerical solutions of PDEs.  In this paper, we propose  a deep learning method for predicting the dynamics of the classic and conservative Allen-Cahn equations. We design two types of convolutional neural network models, one for each of the Allen-Cahn equations, to learn the fully-discrete operators between two adjacent time steps. Specifically, the loss functions of the two models are defined using the residual of the fully-discrete systems, which result from applying the central finite difference discretization in space and the Crank–Nicolson approximation in time (second-order accurate in both time and space).  This approach enables us to train the models without requiring any ground-truth data. Moreover, we introduce a novel training strategy that automatically generates useful samples along the time evolution to facilitate effective training of the models. Finally, we conduct extensive experiments in two and three dimensions to demonstrate the outstanding performance of our proposed method, including its dynamics prediction and generalization ability under different scenarios.

    時(shí)間:202361409:00-10:00

    地點(diǎn):數(shù)學(xué)院424會(huì)議室

     

    歡迎大家積極參加!

     

     

    中國(guó)海洋大學(xué)國(guó)際合作與交流處

    數(shù)學(xué)科學(xué)學(xué)院     

     


    文:
    圖:
    返回列表
    24山 分金 水口 论 吉凶| 赌场百家乐官网网站| 海王星百家乐技巧| 百家乐官网游戏网址| 百家乐电投软件| 澳门美高梅娱乐| 做生意布局风水| 澳门娱乐| 新东方百家乐的玩法技巧和规则 | 百家乐官网筹码订做| 凱旋门百家乐的玩法技巧和规则 | 博彩资讯网| 百家乐换人| 乐天堂百家乐官网娱乐平台| 澳博娱乐| 百家乐必赢术| 免费百家乐官网统计软件| 真钱棋牌游戏| 大发888充值 在线| 百家乐赢多少该止赢| 百家乐官网官网站| 大田县| 大发888手机版下载安装到手| 百家乐八卦投注法| 百家乐官网筹码套装包邮| 百家乐官网怎么压对子| 蜀都棋牌下载| 钱隆百家乐智能| 罗盘24山八卦| 百家乐官网博娱乐平台赌百家乐官网 | 粤港澳百家乐娱乐网| 澳门百家乐官网赌客| bet365娱乐城| 百家乐游戏解码器| 九州百家乐娱乐城| 龙岩市| 大发888真钱娱乐城下载| 百家乐赌场| 荷规则百家乐官网的玩法技巧和规则 | 大发888有破解的没| 怎么赢百家乐的玩法技巧和规则|