澳门全讯-澳门金沙会积分获取

國(境)外文教專家系列講座一百六十一講-比薩大學Dario A. Bini教授:Solving structured matrix equations encountered in the analysis of stochastic processes

發布時間:2022-05-18 閱讀: 64 添加: 管理員

一、主講人介紹:Dario A. Bini

Dario A. Bini,意大利比薩大學數學院教授,主要從事馬爾可夫鏈及排隊問題數值解、矩陣方程數值解法、結構化矩陣計算、幾何矩陣均值及其算法。Dario A. Bini教授在Numerische MathematikMathematics of ComputationSIAM Journal on Scientific ComputingSIAM Journal on Matrix Analysis and ApplicationsIMA Journal of Numerical AnalysisNumerical Linear Algebra with Applications等計算數學國際頂尖和權威期刊發表論文200余篇,出版Numerical Solution of Algebraic Riccati EquationsNumerical Methods for Structured Markov Chains等計算數學論著7余篇。曾擔任SIAM J. Matrix Analysis Appl.Electronic Transactions on Numerical AnalysisElectronic Journal of Linear Algebra等計算數學國際頂尖以及權威期刊編委。

 

二、講座信息

講座摘要:

We consider the problem of solving matrix equations of the kind A_1 X^2+A_0X+A_(-1)=X , where the coefficients  A_r ,r=-1,0,1, are matrices having specific structures, and X is the unknown matrix. The solution of interest is the one that has some minimality properties, say, it has a minimal spectral radius or has nonnegative entries with minimal value. This kind of problem is encountered in the solution of Quasi-Birth-Death processes, a general framework that models real-world problems in terms of Markov chains. In this talk, after presenting and motivating the interest of this class of equations, we investigate some computational issues encountered in their solution. For this class of problems, the coefficients A_r ,r=-1,0,1 ,  are semi-infinite Quasi-Toeplitz (QT) matrices. We give conditions under which the class of QT matrices is a Banach algebra, that is, a vector space closed under multiplication, endowed with a norm that makes it a Banach space. We give conditions under which the sought solution, say the minimal nonnegative one, is still a QT matrix, and describe and analyze  algorithms for its effective computation. Finally, by means of some numerical experiments performed with the CQT Matlab Toolbox, we show the effectiveness of our algorithms

講座時間:526日(星期四)13:30-14:30

騰訊會議號:142-518-059

 

歡迎大家積極參加!

 

 

國際合作與交流處

數學科學學院  

2022518  


? 校址:青島市嶗山區松嶺路238號 郵編:266100 魯ICP備05002467號-1? 版權所有?中國海洋大學 ?
澳门百家乐官网网上直赌| 百家乐电脑上怎么赌| 百家乐官网游戏平台有哪些哪家的口碑最好 | 订做百家乐桌子| 乐九百家乐官网娱乐城| 百家乐微笑不倒| 百家乐官网真人游戏开户| 威尼斯人娱乐城真人百家乐| 百家乐官网专打单跳投注法| 二八杠手法| 临汾玩百家乐的人在那里找| 六合彩百家乐官网有什么平码| 太阳城娱乐网sss977| 百家乐3带厂家地址| 百家乐官网中庄闲比例| 大发888国际娱乐场| 百家乐博彩安全吗| 百家乐官网视频聊天游戏| 百家乐怎么看大小| 马德里百家乐官网的玩法技巧和规则 | 威尼斯人娱乐cheng| 好用百家乐软件| 澳门百家乐官网赌| 繁昌县| 水果机榨汁机| 百家乐纯技巧打| 百家乐网址皇冠现金网| 闲和庄百家乐官网娱乐场| 赌博游戏| 大发888xp缺少 casino| 百家乐的最佳玩| 百家乐网上技巧| 百家乐官网真人娱乐平台| 克拉克百家乐官网试玩| 足球投注开户| 大发888真钱客户端| 百家乐是娱乐场最不公平的游戏 | 真人版百家乐官网试玩| 百家乐官网模拟分析程序| 博乐市| 足球博彩论坛|